Use Cases & Examples
Explore real-world implementations of Spartera across various industries and
use cases.
Sports Analytics Example
Let's explore how our API can be used to analyze sports data and create
valuable assets.
Scenario: NBA Player Performance Analytics
from spartera_api_sdk import ApiClient, Configuration
from spartera_api_sdk.api import assets_api
## Configure client
config = Configuration()
config.host = "https://api.spartera.com"
config.api_key = {'X-API-Key': 'your-api-key-here'}
client = ApiClient(config)
## Create a Single-Column Calculation Asset
asset_data_calc = {
"accept_terms": True,
"asset_type": "CALCULATION",
"company_id": "your-company-id",
"connection_id": "nba-stats-connection",
"description": "Calculate average NBA player efficiency rating",
"name": "Average NBA Player Efficiency Rating",
"sql_logic": "SELECT AVG((points + rebounds + assists + steals + blocks - (field_goals_attempted - field_goals_made) - (free_throws_attempted - free_throws_made) - turnovers) / games_played) FROM nba_player_stats WHERE season = '2024-25' AND games_played >= 20",
"user_id": "your-user-id"
}
## Create a Two-Column Visualization Asset
asset_data_vis = {
"accept_terms": True,
"asset_type": "VISUALIZATION",
"company_id": "your-company-id",
"connection_id": "nba-stats-connection",
"description": "Top NBA player efficiency ratings visualization",
"name": "Top NBA Player Efficiency Ratings",
"viz_chart_type": "BAR",
"schema_table": "nba_stats.player_stats",
"viz_dep_var_col_name": "efficiency_rating",
"viz_indep_var_col_name": "player_name",
"viz_data_limit": 10,
"viz_color_scheme": "Default",
"viz_data_aggregation": "No Aggregation",
"viz_sort_direction": "Descending",
"visibility": "PUBLIC",
"source": "MANUAL",
"active": True,
"user_id": "your-user-id",
"viz_chart_library": "PLOTLY"
}
Industry Use Cases
1. E-commerce Analytics
Customer Lifetime Value Prediction
SELECT AVG(estimated_clv)
FROM (
SELECT
AVG(order_value) * COUNT(DISTINCT order_id) *
(DATEDIFF(CURRENT_DATE, first_purchase_date) / 365.0)
as estimated_clv
FROM customer_orders
GROUP BY customer_id
) AS subquery
2. Financial Services
Credit Risk Assessment
SELECT COUNT(*)
FROM loan_applications
WHERE credit_score < 650 OR debt_to_income >= 0.5
3. Healthcare Analytics
Patient Readmission Risk
SELECT
SUM(CASE WHEN age > 65 AND comorbidity_count > 3 THEN 1 ELSE 0 END) *
100.0 / COUNT(*) AS high_risk_percentage
FROM patient_admissions
4. Marketing Intelligence
Campaign Performance Optimization
Single-Column Calculation: Get the average Return on Ad Spend (ROAS).
SELECT AVG(return_on_ad_spend)
FROM marketing_campaigns
WHERE campaign_start_date >= DATE_SUB(CURRENT_DATE, INTERVAL 30 DAY)
Two-Column Visualization (Line Chart): Show the conversion rate by marketing
channel.
SELECT
channel,
AVG(conversion_rate) AS average_conversion_rate
FROM marketing_campaigns
GROUP BY channel
ORDER BY average_conversion_rate DESC
5. Supply Chain Optimization
Demand Forecasting
SELECT AVG(sales_quantity)
FROM sales_history
WHERE product_id = 'product_123'
Integration Examples
Dashboard Integration (Power BI)
import requests
import pandas as pd
def get_spartera_insight(asset_id, params=None):
headers = {'X-API-Key': 'your-api-key'}
url = f"https://api.spartera.com/insights/{asset_id}/execute"
response = requests.post(url, headers=headers, json=params)
return pd.DataFrame(response.json()['data'])
## Use in Power BI Python script
df = get_spartera_insight('nba-player-efficiency')
Mobile App Integration
// React Native example
import { SparteraClient } from 'spartera-js-sdk';
const client = new SparteraClient({
apiKey: 'your-api-key',
baseURL: 'https://api.spartera.com'
});
async function loadPlayerStats() {
const result = await client.insights.execute({
assetId: 'nba-player-efficiency',
parameters: {
team: 'Lakers',
season: '2024-25'
}
});
return result.data;
}
Real-time Streaming
import asyncio
from spartera_api_sdk.websockets import WebSocketClient
async def stream_live_scores():
client = WebSocketClient('wss://api.spartera.com/stream')
await client.subscribe('sports-scores-live', {
'leagues': ['NBA', 'NFL'],
'teams': ['Lakers', 'Patriots']
})
async for message in client.listen():
print(f"Live update: {message}")
## Run the streaming client
asyncio.run(stream_live_scores())
